References and Notes
For the synthesis and applications of Tröger’s base derivatives in host-guest chemistry:
<A NAME="RU02306ST-1A">1a</A>
Goswami S.
Ghosh K.
Dasgupta S.
J. Org. Chem.
2000,
65:
1907
<A NAME="RU02306ST-1B">1b</A>
Stoncius S.
Butkus E.
Zilinskas A.
Larsson K.
Ohrstrom L.
Berg U.
Warnmark K.
J. Org. Chem.
2004,
69:
5196
<A NAME="RU02306ST-1C">1c</A>
Kimber MC.
Try AC.
Painter L.
Harding MM.
Turner P.
J. Org. Chem.
2000,
65:
3042
<A NAME="RU02306ST-1D">1d</A>
Pardo C.
Sesmilo E.
Gutierrez-Puebla E.
Monge A.
Elguero J.
Fruchier A.
J. Org. Chem.
2001,
66:
1607
<A NAME="RU02306ST-1E">1e</A>
Jensen J.
Tejler J.
Warnmark K.
J. Org. Chem.
2002,
67:
6008
<A NAME="RU02306ST-1F">1f</A>
Cerrada L.
Cudero J.
Elguero J.
Pardo C.
J. Chem. Soc., Chem. Commun.
1993,
1713
<A NAME="RU02306ST-1G">1g</A>
Valik M.
Dolensky B.
Herdtweck E.
Kral V.
Tetrahedron: Asymmetry
2005,
16:
1969
<A NAME="RU02306ST-1H">1h</A>
Solano C.
Svensson D.
Olomi Z.
Jensen J.
Wendt OF.
Warnmark K.
Eur. J. Org. Chem.
2005,
3510
<A NAME="RU02306ST-1I">1i</A>
Hansson AP.
Norrby P.-O.
Warnmark K.
Tetrahedron Lett.
1998,
39:
4565
<A NAME="RU02306ST-1J">1j</A>
Bag BG.
von Kiedrowski G.
Angew. Chem. Int. Ed.
1999,
38:
3713
For the structure and enantiomerization process of Tröger’s base, see:
<A NAME="RU02306ST-2A">2a</A>
Aamouche A.
Devlin FJ.
Stephens PJ.
J. Am. Chem. Soc.
2000,
122:
2346
<A NAME="RU02306ST-2B">2b</A>
Trapp O.
Schurig V.
J. Am. Chem. Soc.
2000,
122:
1424
<A NAME="RU02306ST-2C">2c</A>
Trapp O.
Trapp G.
Kong J.
Hahn U.
Vögtle F.
Schurig V.
Chem. Eur. J.
2002,
8:
3629
<A NAME="RU02306ST-3A">3a</A>
Wilen SH.
Qi JZ.
J. Org. Chem.
1991,
56:
485
<A NAME="RU02306ST-3B">3b</A>
Johnson RA.
Gorman RR.
Wnuk RJ.
Crittenden NJ.
Aiken JW.
J. Med. Chem.
1993,
36:
3202
<A NAME="RU02306ST-4A">4a</A>
Lee KY.
Lee CG.
Na JE.
Kim JN.
Tetrahedron Lett.
2005,
46:
69
<A NAME="RU02306ST-4B">4b</A>
Lee KY.
Lee MJ.
Kim JN.
Bull. Korean Chem. Soc.
2005,
26:
665
<A NAME="RU02306ST-4C">4c</A>
Lee KY.
Lee MJ.
Kim JN.
Tetrahedron
2005,
61:
8705
For the synthesis and synthetic applications of enaminone esters, see:
<A NAME="RU02306ST-5A">5a</A>
Gurtler CF.
Steckhan E.
Blechert S.
J. Org. Chem.
1996,
61:
4136
<A NAME="RU02306ST-5B">5b</A>
Barton DHR.
Langlois P.
Okano T.
Ozbalik N.
Tetrahedron Lett.
1990,
31:
325
<A NAME="RU02306ST-5C">5c</A>
Talley JJ.
Tetrahedron Lett.
1981,
22:
823
<A NAME="RU02306ST-5D">5d</A>
Maw G.
Thirsk C.
Whiting A.
Tetrahedron Lett.
2001,
42:
8387
<A NAME="RU02306ST-5E">5e</A>
Navarro-Vazquez A.
Garcia A.
Dominguez D.
J. Org. Chem.
2002,
67:
3213
<A NAME="RU02306ST-5F">5f</A>
McCulloch AW.
McInnes AG.
Can. J. Chem.
1974,
52:
3569
<A NAME="RU02306ST-5G">5g</A>
Buechi G.
Vogel DE.
J. Org. Chem.
1983,
48:
5406
<A NAME="RU02306ST-5H">5h</A>
Shahi SP.
Koide K.
Angew. Chem. Int. Ed.
2004,
43:
2525
<A NAME="RU02306ST-5I">5i</A>
Cho CS.
Tetrahedron Lett.
2005,
46:
1415
<A NAME="RU02306ST-6">6</A> Recently Voskressensky and co-workers reported an interesting tetrahydropyridine
ring expansion under the action of activated terminal alkynes via similar mechanism
to ours:
Voskressensky LG.
Borisova TN.
Kostenev IS.
Kulikova LN.
Varlamov AV.
Tetrahedron Lett.
2006,
47:
999 ; and references cited therein
<A NAME="RU02306ST-7">7</A>
Compound 3a; Typical Procedure. To a stirred mixture of 1 (250 mg, 1 mmol) and 2a (84 mg, 1 mmol) in CH3CN (2 mL) was added ZnBr2 (225 mg, 1 mmol) and the resulting mixture was heated to 50-60 °C for 4 h. After
the usual work-up and column chromatography (hexanes-Et2O, 6:1), 3a was obtained as a colorless oil; 302 mg (90%). IR (film): 1720, 1493 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 2.16 (s, 3 H), 2.19 (s, 3 H), 3.78 (s, 3 H), 3.97 (d, J = 16.8 Hz, 1 H), 4.22 (d, J = 16.5 Hz, 1 H), 4.25 (d, J = 16.8 Hz, 1 H), 4.72 (d, J = 16.5 Hz, 1 H), 5.11 (s, 1 H), 5.59 (s, 1 H), 6.10 (s, 1 H), 6.57 (s, 1 H), 6.69
(s, 1 H), 6.91-7.08 (m, 4 H). 13C NMR (CDCl3, 75 MHz): δ = 20.92 (2 C), 52.18, 53.19, 61.39, 72.22, 124.93, 125.07, 127.04, 127.15,
127.22, 127.43, 127.49, 128.09, 128.59, 133.31, 133.45, 137.79, 143.53, 147.17, 167.28.
EIMS (70 eV): m/z (%) = 132 (100), 215 (44), 275 (30), 334 (M+, 86). Anal. Calcd for C21H22N2O2: C, 75.42; H, 6.63; N, 8.38. Found: C, 75.65; H, 6.87; N, 8.35.
Compound 3b: Yield: 87%; colorless oil. IR (film): 1728, 1493 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 1.27 (t, J = 7.2 Hz, 3 H), 2.14 (s, 3 H), 2.18 (s, 3 H), 3.96 (d, J = 17.1 Hz, 1 H), 4.18-4.33 (m, 4 H), 4.71 (d, J = 16.5 Hz, 1 H), 5.11 (s, 1 H), 5.58 (s, 1 H), 6.07 (s, 1 H), 6.56 (s, 1 H), 6.68
(s, 1 H), 6.90-7.08 (m, 4 H). 13C NMR (CDCl3, 75 MHz): δ = 14.25, 20.86 (2 C), 53.18, 60.92, 61.31, 72.22, 124.91, 125.03, 126.58,
126.99, 127.16, 127.44, 127.49, 128.03, 128.51, 133.20, 133.33, 138.17, 143.55, 147.20,
166.81. EIMS (70 eV): m/z (%) = 77 (100), 103 (89), 132 (97), 275 (24), 348 (M+, 29). Anal. Calcd for C22H24N2O2: C, 75.83; H, 6.94; N, 8.04. Found: C, 75.85; H, 6.81; N, 8.11.
Compound 3c: Yield: 65%; colorless oil. IR (film): 1724, 1493 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 1.28 (t, J = 7.2 Hz, 3 H), 1.70 (s, 3 H), 2.16 (s, 3 H), 2.20 (s, 3 H), 4.02 (d, J = 17.4 Hz, 1 H), 4.15 (d, J = 17.1 Hz, 1 H), 4.16-4.38 (m, 3 H), 4.70 (d, J = 17.1 Hz, 1 H), 5.95 (s, 2 H), 6.55 (s, 1 H), 6.67 (s, 1 H), 6.89-7.08 (m, 4 H).
13C NMR (CDCl3, 75 MHz): δ = 14.39, 21.05 (2 C), 24.65, 55.29, 56.59, 60.82, 74.60, 125.45, 126.59,
126.61, 126.96, 127.80, 127.84, 128.27, 128.40, 133.26, 133.27, 143.07, 145.47, 146.41,
167.01. EIMS (70 eV): m/z (%) = 43 (100), 77 (81), 132 (84), 230 (52), 289 (15), 362 (M+, 23). Anal. Calcd for C23H26N2O2: C, 76.21; H, 7.23; N, 7.73. Found: C, 76.41; H, 7.19; N, 7.58.
Compound 3d: Yield: 61%; colorless oil. IR (film): 1728, 1493 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 1.45 (t, J = 7.2 Hz, 3 H), 2.09 (s, 3 H), 2.18 (s, 3 H), 4.00 (d, J = 17.1 Hz, 1 H), 4.01-4.11 (m, 2 H), 4.19 (d, J = 17.1 Hz, 1 H), 4.24 (d, J = 17.1 Hz, 1 H), 4.45 (d, J = 17.1 Hz, 1 H), 5.96 (s, 1 H), 6.14 (s, 1 H), 6.34 (s, 1 H), 6.62 (s, 1 H), 6.92-7.28
(m, 7 H), 7.57-7.71 (m, 2 H). 13C NMR (CDCl3, 75 MHz): δ = 14.20, 20.98, 21.05, 56.31, 56.65, 60.62, 79.33, 125.44, 125.65, 126.61,
126.95, 126.97, 127.58, 128.16, 128.36, 128.38, 128.65, 128.68, 130.46, 133.00, 133.25,
140.09, 142.74, 146.05, 146.12, 166.13. EIMS (70 eV): m/z (%) = 43 (100), 77 (86), 292 (28), 351 (11), 424 (M+, 19). Anal. Calcd for C28H28N2O2: C, 79.22; H, 6.65; N, 6.60. Found: C, 79.16; H, 6.67; N, 6.69.
Compound 3e: Yield: 79%; colorless oil. IR (film): 1763, 1732, 1493 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 2.17 (s, 6 H), 3.72 (s, 3 H), 3.78 (s, 3 H), 4.10 (d, J = 17.4 Hz, 1 H), 4.22 (d, J = 17.4 Hz, 1 H), 4.31 (d, J = 17.4 Hz, 1 H), 4.47 (d, J = 17.4 Hz, 1 H), 6.01 (s, 1 H), 6.08 (s, 1 H), 6.58 (s, 2 H), 6.95-6.98 (m, 2 H),
7.12-7.17 (m, 2 H). 13C NMR (CDCl3, 75 MHz): δ = 20.71, 20.76, 52.23, 53.12, 56.08, 56.97, 80.19, 124.71, 125.02, 125.78,
126.28, 126.73, 127.26, 128.37, 128.50, 129.66, 133.11, 133.70, 137.94, 144.54, 145.68,
166.56, 168.51. ESIMS: m/z = 393 (M+ + H). Anal. Calcd for C23H24N2O4: C, 70.39; H, 6.16; N, 7.14. Found: C, 70.51; H, 6.27; N, 7.25.
<A NAME="RU02306ST-8">8</A>
Compound 5a; Typical Procedure. To a stirred mixture of 1 (250 mg, 1 mmol) and 2f (530 mg, 10 mmol) in CH3CN (2 mL) was added ZnBr2 (45 mg, 0.2 mmol) and the resulting mixture was heated to 50-60 °C for 19 h. After
the usual work-up and column chromatography (hexanes-Et2O, 10:1) 5a was obtained as colorless oil, 185 mg (61%). We could not obtain the exact 13C NMR spectra for 5a-c due to the line-broadening effect of the nitrogen atom.
[4a]
In order to assign more precisely the stereochemistry we took the 1H NMR spectrum of 5a in CDCl3 at elevated temperature, 50 °C (500 MHz). Fortunately, the vinyl peak (δ = 3.94 ppm)
at the α-position of the nitrile split into a doublet (J = 14.0 Hz), which corresponded to trans stereochemistry. However, the other vinyl peak (δ = 6.86 ppm) appeared as a broad
doublet. We also acquired NOE difference spectra. Irradiation of either proton at
δ = 3.94 ppm or δ = 6.86 ppm did not show any NOE enhancement. From these supple-mentary
experiments we believe the geometry to be trans.
IR (film): 2924, 2198, 1620, 1504 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 2.30 (s, 3 H), 2.36 (s, 3 H), 2.82 (s, 3 H), 3.94 (br s, 1 H), 4.12
(br s, 2 H), 4.56 (s, 2 H), 6.86 (br s, 1 H), 6.98-7.16 (m, 6 H). 13C NMR (CDCl3, 75 MHz): δ = 20.41, 20.77, 39.20, 57.87, 65.44, 116.69, 121.75, 123.39, 129.10,
129.46, 130.97, 131.78, 135.54, 142.29, 147.88, 150.94. ESIMS: m/z = 304 (M+ + H). Anal. Calcd for C20H21N3: C, 79.17; H, 6.98; N, 13.85. Found: C, 79.35; H, 6.79; N, 13.75.
Compound 5b: Yield: 43%; colorless oil. IR (film): 1693, 1601, 1504, 1149 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 2.30 (s, 3 H), 2.35 (s, 3 H), 2.81 (s, 3 H), 3.59 (s, 3 H), 4.14 (br
s, 2 H), 4.59 (s, 2 H), 4.72 (br s, 1 H), 6.84 (br s, 1 H), 7.00-7.11 (m, 5 H), 7.68
(d, J = 13.5 Hz, 1 H). 13C NMR (CDCl3, 75 MHz): δ = 20.45, 20.75, 39.37, 50.54, 53.83, 58.07, 88.59, 116.62, 123.44, 128.97,
129.16, 130.75, 132.04, 134.92, 143.50, 149.26, 169.72. ESIMS: m/z = 337 (M+ + H). Anal. Calcd for C21H24N2O2: C, 74.97; H, 7.19; N, 8.33. Found: C, 75.15; H, 7.27; N, 8.35.
Compound 5c: Yield: 42%; colorless oil. IR (film): 1689, 1601, 1504, 1142 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 1.21 (t, J = 6.9 Hz, 3 H), 2.30 (s, 3 H), 2.35 (s, 3 H), 2.82 (s, 3 H), 4.07 (q, J = 6.9 Hz, 2 H), 4.11 (br s, 2 H), 4.58 (br s, 2 H), 4.72 (br s, 1 H), 6.84 (br s,
1 H), 7.00-7.11 (m, 5 H), 7.68 (d, J = 13.5 Hz, 1 H). ESIMS: m/z = 351 (M+ + H). Anal. Calcd for C22H26N2O2: C, 75.40; H, 7.48; N, 7.99. Found: C, 75.61; H, 7.38; N, 7.91.
<A NAME="RU02306ST-9">9</A>
Compound 6a. A mixture of 3a (334 mg, 1 mmol) and Pd/C (5 wt.%, 30 mg) in a MeOH-CH2Cl2 (1:1, 3 mL) was stirred under a H2 atmosphere (balloon) for 44 h at r.t. After filtration through a pad of Celite, removal
of the solvent, and column chromatography (hexanes-Et2O, 20:1), two diastereomers of 6a were obtained as colorless oils; fast-moving isomer (98 mg, 29%) and slow-moving
isomer
(163 mg, 48%).
6a (minor isomer): IR (film): 1739, 1493 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 1.25 (d, J = 6.9 Hz, 3 H), 2.19 (s, 3 H), 2.20 (s, 3 H), 2.72 (dq, J = 10.8, 6.9 Hz, 1 H), 3.73 (s, 3 H), 3.94 (d, J = 17.7 Hz, 1 H), 4.12 (d, J = 10.8 Hz, 1 H), 4.14 (d, J = 16.5 Hz, 1 H), 4.63 (d, J = 16.5 Hz, 1 H), 4.67 (d, J = 17.7 Hz, 1 H), 6.68 (s, 2 H), 6.89-7.00 (m, 4 H). 13C NMR (CDCl3, 75 MHz): δ = 15.01, 21.01, 21.04, 41.41, 52.06, 52.74, 61.08, 75.70, 125.34, 126.01,
127.21, 127.23, 127.34, 127.90, 128.07, 128.45, 133.49, 133.52, 142.89, 148.25, 175.37.
EIMS (70 eV): m/z (%) = 84 (47), 120 (100), 249 (54), 336 (M+, 30).
6a (major isomer): IR (film): 1740, 1493 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 1.34 (d, J = 6.9 Hz, 3 H), 2.19 (s, 6 H), 2.70 (dq, J = 11.1, 6.9 Hz, 1 H), 3.66 (s, 3 H), 3.98 (d, J = 17.4 Hz, 1 H), 4.06 (d, J = 16.5 Hz, 1 H), 4.22 (d, J = 11.1 Hz, 1 H), 4.32 (d, J = 17.4 Hz, 1 H), 4.61 (d, J = 16.5 Hz, 1 H), 6.66 (d, J = 9.0 Hz, 2 H), 6.89-7.01 (m, 4 H). 13C NMR (CDCl3, 75 MHz): δ = 14.37, 21.00, 21.03, 41.38, 51.80, 52.16, 60.94, 75.34, 125.12, 126.11,
126.70, 126.94, 127.42, 128.08, 128.16, 128.57, 133.23, 133.59, 143.30, 147.86, 175.44.
EIMS (70 eV): m/z (%) = 77 (98), 132 (100), 249 (66), 336 (M+, 41). Anal. Calcd for C21H24N2O2: C, 74.97; H, 7.19; N, 8.33. Found: C, 75.05; H, 7.17; N, 8.47.
<A NAME="RU02306ST-10">10</A>
Compound 7a. A mixture of 3a (167 mg, 0.5 mmol) and NaBH4 (57 mg, 1.5 mmol) in MeOH-CH2Cl2 (1:1, 2 mL) was stirred for 4 h at r.t. After the usual workup and column chromatography
(hexanes-Et2O, 4:1) we obtained 6a as a mixture of two isomers, 148 mg (88%). During the separation we isolated also
a low yield of 7a.
7a: Yield: 9%; white solid; mp 163-164 °C. IR (KBr): 3363, 1682, 1620, 1504, 1119 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 1.19 (d, J = 0.9 Hz, 3 H), 2.26 (s, 3 H), 2.31 (s, 3 H), 3.65 (s, 3 H), 4.25 (s, 2 H), 4.61
(s, 2 H), 6.61 (d, J = 7.8 Hz, 1 H), 6.89-7.03 (m, 5 H), 7.45 (q, J = 0.9 Hz, 1 H). 13C NMR (CDCl3, 75 MHz): δ = 12.27, 20.41, 20.85, 51.07, 51.65, 60.56, 99.66, 119.44, 126.10, 126.75,
128.11, 129.13, 129.74, 130.08, 131.58, 134.22, 134.74, 142.64, 145.52, 146.92, 170.84.
ESIMS: m/z = 337 (M+ + H). Anal. Calcd for C21H24N2O2: C, 74.97; H, 7.19; N, 8.33. Found: C, 74.88; H, 7.39; N, 8.16.
<A NAME="RU02306ST-11">11</A>
Compound 7a slowly converted to 6a. We found that the conversion of 7a (as a solution in CDCl3) to 6a was complete, almost quantitatively, within two weeks (TLC).
<A NAME="RU02306ST-12A">12a</A>
Northrop RC.
Russ PL.
J. Org. Chem.
1975,
40:
558
<A NAME="RU02306ST-12B">12b</A>
Szmuszkovicz J, and
Cerda ES. inventors; US Patent 3,714,186.
; Chem. Abstr. 1973, 78, 136055